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In this article, a discrete effect in the thermal Lattice BGK two-speed model is
studied. These effects are due to the non-equilibrium state in the particle distri-
bution function, and the non-equilibrium occurs near walls. The mechanism of
the LBM counterpart of the thermal creep flow, which appears due to the tem-
perature gradient of the boundary in rarefied gases, is clarified analytically
and numerical calculations are performed for some cases. A technique for
eliminating this effect is also shown.
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1. INTRODUCTION

In recent years, interest in the lattice Boltzmann method (LBM) has been
rapidly increasing, and the number of applications has also been increasing
from conventional ordinary fluids to complex fluids. (1–4)

The lattice Boltzmann method (LBM) is a method for simulating the
motions of continuous fluids by computing the collision and the propaga-
tion of microscopic particles. This method has been developed from the
lattice gas automata (LGA), (5–7) but recently the lattice Boltzmann equation
has been rigorously derived from the ordinary Boltzmann equation in
kinetic theory. (8–10) Therefore, the lattice Boltzmann equation can be
understood to have a sound connection with fluid dynamics. Essentially,
this method is considered to simulate the Navier–Stokes equations, and
actually, theNavier–Stokes equations are derived by the so-called Chapman–
Enskog expansion technique. But the particles translate from one lattice



site to a neighboring site without collision, and the lattice size can be
considered to be the counter part of the order of the mean free path in
molecular gas dynamics. The lattice size is not necessarily small when
compared with the length scale.
In molecular gas dynamics, when the Knudsen number (ratio of the

mean free path to the length scale) is not very small, various rarefied gas
effects appear, and the flow field becomes different from those obtained by
the Navier–Stokes equations.
In the LBM, the counter part of the Knudsen number (ratio of the

lattice size to the length scale) is not small, so some similar effect should
appear. This effect is unphysical but it is due to the finite size of the lattice.
Therefore, this effect is called the "discrete effect." The same kind of effect
has been investigated in connection with the slip on the solid boundary for
the LGA (11, 12) and for the LBM. (13, 14)

In this study, the LBM counterpart of the thermal creep flow, which
appears due to the temperature gradient of the boundary in rarefied
gases, (15) is studied. The two-speed model is used and it is shown that the
steady flow is induced in the direction of the temperature gradient parallel
to the boundary surface.
By a simple analysis, it is clarified that this flow is driven by the par-

ticles emitting from the boundary and some numerical examples are also
presented.

2. THE THERMAL LATTICE BGK MODEL

There are two kinds of models in the lattice Boltzmann method; one is
a non-thermal model and the other is a thermal model. The energy conser-
vation of the particles is not considered in the non-thermal models, even
though they have compressible features. On the other hand, thermal
models include energy conservation at the particle collision, (2, 16) and they
can treat compressible fluids rigorously. In the thermal models, multi-speed
particles, in general, are necessary in order to increase the degree of the
particle energy.

2.1. The Lattice BGK Equation

The lattice Boltzmann model employed here uses a hexagonal grid in
which each site is connected to its six nearest neighbors as shown in Fig. 1.
The particles translate along lattice lines of sizes D with constant speeds,
which allow moving particles to reach the neighboring lattice sites during
one time step. After translation, the particles collide with each other on
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Fig. 1. Hexagonal lattice.

lattice sites according to the rule to conserve the mass, momentum, and
energy.
The lattice BGK model employs the single time relaxation parameter

which Bhatnagar, Gross and Krook (17) first introduced in order to simplify
the collision term in the Boltzmann Eq. (18). For this study, the two-speed
model (D2Q13) as shown in Fig. 2 was used because this model is simplest
in the two-dimensional thermal BGK model. For other models, the same
discussion can be directly applied and the same result will be obtained.

Fig. 2. Particle traveling directions and 2D13V model.
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Let the distribution function be denoted as fs, i, where subscript s
represents the particle speed and s=0, 1, 2 for this model, and i represents
the direction of translation and i=1, 2,..., 6 if s ] 0. The distribution
function of particles with velocity csi at site r at time t is evolved according
to the lattice BGK equation,

fs, i(t+y, r+cs, iy)=fs, i(t, r)−
1
f
(fs, i(t, r)−f

(0)
s, i(t, r)) (1)

where csi, is the velocity vector in the i-th direction with |cs, i |=sc and
f (0)s, i(t, r) is the local equilibrium distribution function. The second term on
the right hand side of (1) is the collision operator, and f is the relaxation
time coefficient. This collision operator shows the particle distribution
function approaches an equilibrium state during the collision step.
The dynamics of the fluid can be described by the distribution func-

tion obeying the lattice BGK Eq. (1). Here, the fundamental physical
variables are the density r, the fluid momentum rua and the total energy of
the fluid 12 ru

2+re, which are related to the distribution function by,

r=C
s, i
fs, i=C

s, i
f (0)s, i (2)

rua=Cs,i f
s,i

cs,i,a=Cs,i f
(0)

s,i
cs,i,a (3)

1
2 ru

2+re=C
s, i

1
2 fs, ic

2
s, i, a=C

s, i

1
2 f

(0)
s, ic

2
s, i, a (4)

where ua is the component of flow velocity, and e is the internal energy
of the fluid per unit volume. The index a represents the Cartesian
component.

2.2. Macroscopic Governing Equations of Fluid

The continuumhydrodynamic equationsmodeled by this dynamic scheme
can be determined by performing a Chapman–Enskog expansion on the
lattice BGK equation (1). Equation (1) can be Taylor expanded to the
second order as

“fa
“t
+caa

“fa
“ra
+
1
2
ycaacab

“
2fa

“ra “rb
+ycaa

“
2fa
“t “ra

+
1
2
y
“
2fa
“t2

5 −
1
yf
(fa−f

(0)
a )
(5)
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where subscript a represents s, i in (1) for simplicity, and a and b represent
the Cartesian components. By expanding the distribution function
and the time and space derivatives as,

fa=f
(0)
a +f

neq
a =f

(0)
a +ef

(1)
a +e

2f (2)a +·· · ,

“

“t
Q e

“

“t1
+e2

“

“t2
, (6)

“

“ra
Q e

“

“r1a

and using (5), the Chapman–Enskog expansion can be performed.
Substituting (6) into (5) and collecting terms up to O(e2) obtains

1 “
“t1
+
“

“t2
2 f (0)a +caa

“f (0)a
“r1a
+11− 1

2f
2 5“f (1)a
“t1
+caa

“f (1)a
“r1a
6=− 1

yf
(f(1)a +f

(2)
a )
(7)

This must lead to the continuity equation,

“r

“t
+
“

“r1a
(rua)=0 (8)

the Navier–Stokes equations,

“

“t
rua+

“

“r1b
(ruaub)=−

“P
“r1a
+
“

“r1b
m 1 “ub
“r1a
+
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2+ “

“r1a
1l “uc
“r1a
2 (9)

and the energy equation for the macroscopic fluid,

“

“t
1re+1

2
ru22+ “

“r1a
1re+P+1

2
ru22 ua

=
“

“r1a
1k “e
“r1a
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1l “ub
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The pressure P, the viscosity m, the second viscosity l and the conductivity
of the internal energy o of this fluid are given, respectively by,

P=
2
D
re, m=

2
D
rey 1f−1

2
2 , l=−

4
D2
rey 1f−1

2
2,

o=
2(D+2)
D2

rey 1f−1
2
2 (11a,b,c,d)

where D indicates the dimension and 2 in this case.
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2.3. The Equilibrium Distribution Function

The local equilibrium distribution function is expressed as,

f (0)si=Fsr [1−2Bcsiaua+2B
2csiacsibuaub+Bu2] (12)

The moving particles are allowed to move with two kinds of speed, c, 2c.
The unknown factors in (12), that is F0, F1, F2, and B are determined
according to the constraints that (12) satisfies (2), (3), and (4), and that
the macroscopic equation governing the fluid motion corresponds to the
Navier–Stokes equations. The functions, F0, F1, F2, are determined as,

F0=1+
1
4B2c4

(2+5Bc2), F1=−
1
9B2c4

(1+2Bc2),

F2=
1

36B2c4
11+1

2
Bc22 (13a,b,c)

and,

B=−
1
2e

(14)

3. THERMAL CREEP FLOW IN THE THERMAL LATTICE BGK MODEL

For rarefied gases, extended studies (15) on the thermal creep flow
have been performed so far. In the continuous limit, this flow can be
negligible. However, in the thermal LBM model, this false flow can be
significant even when considering that this model is a solver of the Navier–
Stokes equation. This is shown by the following simple analysis.

3.1. The Case Without a Wall

Consider a two-dimensional flow being at rest with a linear internal
energy or temperature gradient in the x-direction. First, the x-direction is
taken in the direction perpendicular to the lattice line as shown in Fig. 3.
The an-isotropic feature of the lattice shall be considered later. No body
force is taken into account. The pressure is represented by P=re and is
assumed to be constant, say P0. As the pressure is uniform, the density
gradient is inverse to that of the internal energy. The increment of the
internal energy between neighboring sites is denoted by dedx

`3
2 D, where D

denotes lattice size, i.e., the distance between the neighboring sites, and the
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Fig. 3. Lattice line and the x direction (1).

internal energy gradient is assumed as being constant. Then the density
distribution is expressed as, r=P0/e.
For simplicity, any change in the direction perpendicular to the

x-direction (see Fig. 3) is not considered, that is one dimensional flow in
the flow domain, and the local equilibrium distribution functions are con-
sidered at points on five neighboring columns as shown in Fig. 4. The
internal energy and the density do not change along each column. Then,
the local equilibrium functions for zero velocity are,

f (0)1, i(±1)=−
4P0
9
1e± de

dx
`3

2
D−12 ,

f (0)2, i(±2)=
P0
9
1e±2 de

dx
`3

2
D−
1
4
2 , (i=1, 2,..., 6) (15)

Fig. 4. Definition of neighboring sites.
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where c=1 is put in (13) and the time increment y=D/c=D is taken
hereafter without any loss of generality. Here only the following two steps
are considered; that is the translation and the collision stages of the par-
ticles. The distribution function after the translation (after the time
increment y) at the site ‘‘0’’ will be,

f1, 3(0)=−
4P0
9
1e− de

dx
`3

2
D−12 , f1, 5(0)=−

4P0
9
1e+de

dx
`3

2
D−12 ,

f2, 3(0)=
P0
9
1e−2 de

dx
`3

2
D−
1
4
2 , f2, 5(0)=

P0
9
1e+2 de

dx
`3

2
D−
1
4
2

(16)

and f0 does not change. No consideration to fs, 1 or fs, 4 is given here,
because they have nothing to do with the velocity in the x-direction. The
assumption of the flow velocity being 0 in the direction perpendicular to
the x-direction results in,

f1, 3=f1, 2, f2, 3=f2, 2, f1, 5=f1, 6, f2, 5=f2, 6 (17)

Then the flow velocity in the x-direction at this point is,

u=
2
r
[f0×0+f1, 1×`3+f1, 2×(−`3)+f2, 1×2`3+f2, 2×(−2`3)]=0

(18)

and as is evident, there is naturally no flow.
After the collision stage, there is no flow also because at the collision

the momentum is conserved at each lattice site regardless of the value of
the relaxation time coefficient f.
When there is no boundary, the distribution functions in a steady state

at a lattice site, say, site ‘‘0’’ are,

f s1, 3(0)=−
4P0
9
1e+(1−f) de

dx
`3

2
D−12 ,

f s1, 5(0)=−
4P0
9
1e−(1−f) de

dx
`3

2
D−12 ,

f s2, 3(0)=
P0
9
1e+2(1−f) de

dx
`3

2
D−
1
4
2 ,

f s2, 5(0)=
P0
9
1e−2(1−f) de

dx
`3

2
D−
1
4
2

(19)
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where the distribution function for the rest particles is not considered
because it does not matter in this analysis. As in (17), there is also,

fs1, 3=fs1, 2, fs2, 3=fs2, 2, fs1, 5=fs1, 6, fs2, 5=fs2, 6 (20)

These functions induce no velocity, but the thermal energy flux does exist.

3.2. The Effect of Wall

Consider the situation where wall extending in the x-direction with the
same temperature gradient as that in the flow domain is inserted in the
fluid in a steady state as shown in Fig. 5. At the surface, the diffusive
reflection of the particles, that is the particles reflecting in the manner of
the local equilibrium distribution or Maxwellian distribution, is assumed.
The equilibrium distribution function at the surface is determined by (12),
(13) and (14) using the temperature or the internal energy at the surface
and zero velocity and the density calculated from incoming and outgoing
particles. Then the distribution functions are uniquely determined and
symmetric with respect to the plane perpendicular to the x-direction. The
particles in directions 3 and 5 on the wall surface as shown in Fig. 5 where
the no-slip local equilibrium distribution function is applied are given as,

fw1, 3(−1)=−
4P0
9
1e− de

dx
`3

2
D−12, fw1, 5(1)=−

4P0
9
1e+de

dx
`3

2
D−12,

fw2, 3(−1)=
P0
9
1e− de

dx
`3

2
D−
1
4
2, fw2, 5(1)=

P0
9
1e+de

dx
`3

2
D−
1
4
2

(21)

Fig. 5. Wall and lattice (1).
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The particles of speed c (=1) move to the site ‘‘0’’ after the translation in
time increment y, and the particles of speed 2c (=2) move to the same
point after y/2. Therefore the particles in directions 3 and 5 at the site ‘‘0’’
are obtained by replacing 1 and −1 with 0 in the first two expressions in
(21). The particles in directions 2 and 6 are given by (19) and (20), and

f1, 3(0)=−
4P0
9
1e+(1−f) de

dx
`3

2
D−12 ,

f1, 5(0)=−
4P0
9
1e−(1−f) de

dx
`3

2
D−12 ,

f2, 3(0)=
P0
9
1e+2(1−f) de

dx
`3

2
D−
1
4
2 ,

f2, 5(0)=
P0
9
1e−2(1−f) de

dx
`3

2
D−
1
4
2

(22)

Then, the velocity is,

u=
1
r
5f0×0+fw1, 3×

`3

2
+fw1, 5×1−

`3

2
2+fw2, 3×`3+fw2, 5×1−`32

+fw1, 2×
`3

2
+fw1, 6×1−

`3

2
2+fw2, 2×`3+fw2, 6×(−`3)6

=
4P0
9r
de
dx
`3

2
D (23)

or

u=
4
9
e
de
dx
`3

2
D=
2
9
d(e)2

dx
`3

2
D (24)

Equation (23) shows that the flow is induced in the direction of the tem-
perature gradient; that is, the parallel direction in the vicinity of the wall. It
should be noted here that this flow is induced by the imbalance of the par-
ticles from the wall given by (21) and the particle from the flow domain
given by (22) does not induce any flow. Also of note is that this driving
force acts on the lattice site at a distance of one lattice from the wall for the
two-speed particle model. If a three-speed model is used, the driving force
will reach a distance of two lattices. If the flow field extends to infinity
from the wall, a steady flow will be obtained by the following considera-
tion. In the vicinity of the wall, the fluid receives the momentum presented
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Fig. 6. Wall and lattice (2).

in (23), where the fluid has finite velocity or not. Therefore, if the fluid
gives the same momentum to the wall, through the particles moving in the
directions 2 and 6 in Fig. 6, then the flow will establish a steady state. If
velocity at a point next to the wall is assumed to be completely parallel to
the wall, then (20) would hold and this flow should have a momentum
twice as large as that which the flow obtains from the wall. So, the flow
velocity is estimated as,

u=
8P0
9r
de
dx
`3

2
D (25)

This is the thermal creep flow of the lattice BGK model, and the velocity is
proportional to the temperature gradient, the pressure and the lattice scale
for given density. When DQ 0, this flow disappears and may be referred to
as the ‘‘continuous limit of FDLBM.’’

3.3. Lattice Dependence or An-Isotropic Feature

Consider the situation where the relation between the lattice and the
wall is changed as in Fig. 6, where the wall is perpendicular to the one
lattice line. In this case, the particles moving in all directions must be con-
sidered. The details have been omitted here but the driven velocity at the
nearest point from the wall is obtained as,

u=
4P0
9r
de
dx
`3

2
D (26)
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This is the same as that in the previous case. It should be noted, however,
that the point on which the driving force acts is a distance of `32 D from the
wall in this case, whereas it was D2 in the previous case. In other words, the
driving force reaches more deeply inside the flow domain in the present
case than in the previous case. This difference does not matter when the
half-infinite domain is considered, but the difference is significant for the
finite domain. Therefore, this flow, a counterpart of the thermal creep flow,
is not isotropic in nature.

Fig. 7. A sketch of the one-way flow channel: (a) Channel shape (one section) and
(b) temperature distribution.
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4. NUMERICAL EXAMPLES

4.1. One-Way Flow in a Channel

Here, a striking result of the rarefied effect of the thermal lattice BGK
model is displayed. Consider a two-dimensional channel with a square
cavity. The lower side is the line of symmetry, so that mirror reflection is
applied. Linear temperature (internal energy) gradients are fixed from the
lowest internal energy e0 to the highest internal energy e1 on the wall as
shown in Fig. 7(a) and (b), and the right and the left sides are the periodic
boundaries. By this shape of channel, Sone et al. (18) show that for rarefied
gases, one-way flow in the rightward direction exists. In molecular gas
dynamics, this phenomenon is sometimes called the ‘‘thermal transpiration
flow.’’ In the lattice thermal BGK flow, which includes several speeds,
a counterpart of the thermal transpiration flow appears.
The number of the lattice is M×N=60×40, M1=20 and N1=20.

The relaxation time coefficient f is kept at 0.6, and the internal energy
e0=0.5 and e1=0.7. The initial conditions are as follows: The fluid density
is r=1.225, and the internal energy e=0.5 in the entire flow field.
Figure 8 shows the velocity field. A one-way rightward flow is induced

in the channel, and there is a counter clockwise circulation flow in the
cavity even without any body force. It is observed that the flow is induced
in the direction of the temperature gradient in the vicinity of the wall.
Figure 9 shows the time history of the mean flow velocity over the

cross-section at the right boundary. The velocity increases as the time
increases but it reaches a steady state.

Fig. 8. Velocity vectors in the channel.
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Fig. 9. The mean flow velocity in the x-direction over the cross section at the origin.

It should be noted here that this flow is unrealistic because the lattice
Boltzmann model is, as stated above, a Navier–Stokes solver, and a tech-
nique for eliminating this effect must be employed. This technique shall be
discussed later.

4.2. Two Dimensional Cavity with Temperature Gradients on

the Both Sides

Consider a domain inside a square cavity with the temperature gradient
on the sides as shown in Fig. 10. The lattice is set so that one of lattice lines

Fig. 10. Sketch of the cavity with thermal gradients on both sides.
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is perpendicular to the sides. The internal energy on the top wall is
e0=0.50 and that on the bottom wall e1=0.70, and the linear gradient is
given on both sides. The number of the lattice is M×N=60×60, the
initial density r=1.225 and the internal energy e=0.50.
In this thermal BGK model, the heat conductivity in (11d) is nearly

constant in a steady state because p=re is nearly constant. Therefore, the
contours of constant internal energy (temperature) should be parallel to
the top or bottom wall and there should not be any flow.
Figure 11 shows the velocity vectors, and downward flows can be

observed on both sides in which two circulation flows are established. The
calculated speed at the point on the horizontal centerline and nearest from
the wall is 0.855×10−6 whereas 1.56×10−6 by the theory presented in (25).
The difference is probably due to the appearance of strong shear in the
calculation because of the counter flow, and this is clearly shown later in
Fig. 16(a).
Because of this flow, the internal energy (temperature) distribution is

different from that expected and is shown by circles in Fig. 12; that is, the
contours of constant internal energy are not straight unlike the theoretical
one.

Fig. 11. Velocity vectors in the cavity.
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Fig. 12. The internal energy distribution along the horizontal centerline. n: Ordinary
boundary condition,i: Modified boundary condition presented in Section 5.

Figure 13 is the relationship between the internal energy (tempera-
ture) gradient and the flow velocity at the point on the horizontal center-
line of the cavity and nearest to the right side. On this point, the density is
almost constant even if the internal energy gradient is changed. The velocity
increases in proportion to the temperature gradient, and it supports (25).

Fig. 13. The relationship between internal energy gradient and velocity.
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Fig. 14. The relationship between lattice size and velocity.

Figure 14 shows the relationship between the lattice size and the flow
velocity. The lattice size is changed by changing the number of the lattice
in the same domain. The value of L in this figure is L=2× (The cavity
height)/`3. The flow velocity increases linearly with the lattice size, and
when DQ 0, the flow is eliminated. This means that when the lattice is suf-
ficiently fine, this unrealistic effect will be neglected, but when the lattice is
coarse, the calculated results must be carefully checked.

4.3. An-Isotropic Nature of the Flow

The results of two cases are compared to check the independence of
the flow on the lattice. One of the lattice lines is perpendicular to the side
(Model 1), and the other parallel to the side (Model 2). The square cavity is
considered by taking the number of the lattice as M×N=52×60 in order
to make the geometrical configuration the same. Figure 15 shows the
velocity distribution in the vertical direction (parallel direction to the side)
along the horizontal center-line. At the sites nearest the wall, the driving
force should be the same, but the positions of the nearest sites are different
for both cases, and then the velocity distributions are different from each
other. In this sense, this flow is anisotropic in nature, which corresponds to
the anisotropic nature of the Knudsen layer in LGA(11).
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Fig. 15. Anisotropic feature of the flow.

5. DISCUSSION AND A TECHNIQUE TO ELIMINATE THE FLOW

As stated above, this discrete effect should be eliminated for simu-
lating the fluid motion governed by the Navier–Stokes equations. The flow is
induced by the imbalance of the particles coming from the wall given by
(21). More precisely, for the two-speed model, if the particles of speed 2c
coming from a site at a distance of two-lattices with the state there, nothing
happens as shown in (18). But if they come from a site on the wall at
a distance of one lattice, then the term 2 dedx

`3
2 D in f2, 3 and f2, 5 in (16) is

changed by de
dx
`3
2 D in (21), and this situation does occur. In order to

eliminate this discrete effect, the site where estimation is made on the par-
ticles of speed 2c should be moved to a site at a distance of two lattices
from the site ‘‘0.’’ That is to say, the site is extended inside the wall and the
temperature (internal energy) and the density are suitably assumed there.
The velocity distributions along the centerline are shown in Fig. 16, in

which ordinary velocity is in (a) and that obtained by the above technique.
In this technique, the internal energy is determined by the value on the side
assuming it does not change in the horizontal direction, and the pressure
is assumed as constant P0; therefore, the density is determined so that
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Fig. 16. Velocity distribution along the horizontal centerline: (a) Velocity by ordinary
boundary condition, (b) velocity by modified boundary condition

r=P0/e. In order words, the same functions as f2, 3 and f2, 5 in (16) are
used instead of those in (21). The contours of constant internal energy
e=0.6 are shown by the square in Fig. 12, and it can be observed that the
variation becomes much smaller and more horizontal.

6. CONCLUSIONS

A discrete effect in the thermal lattice BGK model, especially a coun-
terpart of the thermal creep flow in rarefied gases, which is induced by the
temperature gradient of walls, is clarified by simple analysis and numerical
simulations. This flow is proportionate to the temperature gradient of the
wall and the lattice size for cases of constant pressure and density. If some
lattice sites are considered inside the wall, this unrealistic effect is shown to
be considerably eliminated.

REFERENCES

1. F. J. Alexander, S. Chen, and J. D. Sterling, Lattice Boltzmann thermo-hydrodynamics,
Phys. Rev. E 47:2249–2252 (1993).

2. Y. Chen, H. Ohashi, and M. Akiyama, Thermal lattice Bhatnagar–Gross–Krook model
without nonlinear deviations in macrodynamic equation, Phys. Rev. E 50:2776–2783
(1994).

A Discrete Effect of the Thermal Lattice BGK Model 497



3. J. Huang, F. Xu, M. Vallieres, D. H. Feng, Y. H. Qian, B. Fryxell, and M. R. Strayer,
A thermal LBGK model for large density and temperature differences, Internat.
J. Modern Phys. C 8(4):827–841 (1997).

4. N. Takada, A study of simulation of fluid motion by the lattice Boltzmann method,
Doctor Dissertation (1998), in Japanese.

5. G. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas
automata, Phys. Rev. Lett. 61:2332–2335 (1988).

6. Y. H. Qian, S. Succi, and S. A. Orszag, Recent advances in lattice Boltzmann computing,
Ann. Rev. of Comp. Phy. III, D. Stauffer, ed. (World Scientific, 1995).

7. D. Rothman and S. Zaleski, Lattice-Gas Cellular Automata (Cambridge University Press,
1997).

8. X. He and L-S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann
equation to the lattice Boltzmann equation, Phys. Rev. E 56(6):6811–6817 (1997).

9. X. He and L-S. Luo, A priori derivation of the lattice Boltzmann equation, Phys. Rev. E
55(6):6333–6336 (1997).

10. T. Abe, Derivation of the lattice boltzmann method by means of the discrete ordinate
method for the Boltzmann equation, J. Comp. Phys. 131:241–246 (1997).

11. R. Cornubert, D. D’humieres, and D. Levermore, A Knudsen layer theory of lattice gases,
Physica D 47:241–259 (1991).

12. L-S. Luo et al., Generalized hydrodynamic transport in lattice-gas automata, Phys. Rev. A
43(12):7097–7100 (1991).

13. L-S. Luo, Analytic solution of linearized lattice Boltzmann equation for simple flows,
J. Stat. Phys. 88(3/4):913–925 (1997).

14. X. He et al., Analytic solutions of simple flows and analysis of nonslip boundary
conditions for the lattice Boltzmann BGK model, J. Stat. Phys. 87(1/2):115–136 (1997).

15. Y. Sone, Flows induced by temperature fields in a rarefied gas and their ghost effect on
the behavior of a gas in the continuum limit, Ann. Rev. Fluid Mech. 32:779–811 (2000).

16. F. J. Alexander, S. Chen, and J. D. Stering, Lattice Boltzmann thermodynamics,
Phys. Rev. E 47(4):2249–2252 (1993).

17. P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. I.
Small amplitude processes in charged and neutral one-component systems, Phys. Rev.
94(3):511–525(1954).

18. Y. Sone, Y. Waniguchi, and K. Aoki, One-way flow of a rarefied gas induced in a channel
with a periodic temperature distribution, Phys. Fluids 8(8):2227–2235 (1996).

498 Tsutahara and Kang


	1. INTRODUCTION
	2. THE THERMAL LATTICE BGK MODEL
	3. THERMAL CREEP FLOW IN THE THERMAL LATTICE BGK MODEL
	4. NUMERICAL EXAMPLES
	5. DISCUSSION AND A~TECHNIQUE TO ELIMINATE THE FLOW
	6. CONCLUSIONS

